Genetic interactions studies to better establish efficacious drug targets


Competition: EXPLORE Program 2014
Funding: $300,000 / 2 years
Beginning: June 2015

A major challenge for pharmaceutical companies is identifying efficacious drug targets. Genetic interactions, where the effects of disrupting multiple genes at once are measured, enable unbiased interrogation of functional relationships between any genes of interest. When applied to many genes systematically, an interaction network emerges, and this has proven to be profoundly informative for globally mapping pathways and understanding how a cell operates. Tomas Babak’s team approach aims at discovering efficacious drug targets and biomarkers by comprehensively mapping interactions between established disease pathways and all known genes. Given the practical merits, the approach will also enable custom screens to identify effects specific to genetic background in diverse environments such as in systems that model disease progression or in patient-specific cells. This project will be developing a technology for generating interaction networks that will work in human cells, will be sufficiently high-throughput to enable genome-wide interaction screens, simultaneously detect effects of single, pairwise, and triple gene knockouts, exceed the cost and technical limitations encountered of to now and have an overall impact at all stages of drug development.

Tomas Babak

Queen’s University


Xiaolong Yang
Queen’s University